38 resultados para Anatomy. RNA Sequencing. Catalase. Ascorbate peroxidase. Superoxide dismutase. Saccharum spp

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most useful methods for elimination of solid residues of health services (SRHS) is incineration. However, it also provokes the emission of several hazardous air pollutants such as heavy metals, furans and dioxins, which produce reactive oxygen species and oxidative stress. The present study, which is parallel to an accompanied paper (Avila Jr. et al., this issue), investigated several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of vitamin E, lipoperoxidation = TBARS, reduced glutathione = GSH, oxidized glutathione = GSSG, and activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in three different groups (n = 20 each) exposed to airborne contamination associated with incineration of SRHS: workers directly (ca. 100 m from the incinerator) and indirectly exposed (residents living ca. 5 km the incineration site), and controls (non-exposed subjects). TBARS and GSSG levels were increased whilst GSH, TG and alpha-tocopherol contents were decreased in workers and residents compared to controls. Increased GST and CAT activities and decreased GPx activities were detected in exposed subjects compared to controls, while GR did not show any difference among the groups. In conclusion, subjects directly or indirectly exposed to SRHS are facing an oxidative insult and health risk regarding fly ashes contamination from SRHS incineration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal mining and incineration of solid residues of health services (SRHS) generate several contaminants that are delivered into the environment, such as heavy metals and dioxins. These xenobiotics can lead to oxidative stress overgeneration in organisms and cause different kinds of pathologies, including cancer. In the present study the concentrations of heavy metals such as lead, copper, iron, manganese and zinc in the urine, as well as several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of lipoperoxidation = TBARS, protein carbonyls = PC, protein thiols = PT, alpha-tocopherol = AT, reduced glutathione = GSH, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of six different groups (n = 20 each) of subjects exposed to airborne contamination related to coal mining as well as incineration of solid residues of health services (SRHS) after vitamin E (800 mg/day) and vitamin C (500 mg/day) supplementation during 6 months, which were compared to the situation before the antioxidant intervention (Avila et al., Ecotoxicology 18:1150-1157, 2009; Possamai et al., Ecotoxicology 18:1158-1164, 2009). Except for the decreased manganese contents, heavy metal concentrations were elevated in all groups exposed to both sources of airborne contamination when compared to controls. TBARS and PC concentrations, which were elevated before the antioxidant intervention decreased after the antioxidant supplementation. Similarly, the contents of PC, AT and GSH, which were decreased before the antioxidant intervention, reached values near those found in controls, GPx activity was reestablished in underground miners, and SOD, CAT and GST activities were reestablished in all groups. The results showed that the oxidative stress condition detected previously to the antioxidant supplementation in both directly and indirectly subjects exposed to the airborne contamination from coal dusts and SRHS incineration, was attenuated after the antioxidant intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species and nitrogen species have been implicated in the pathogenesis of coal dust-induced toxicity. The present study investigated several oxidative stress biomarkers (Contents of lipoperoxidation = TBARS, reduced = GSH, oxidized = GSSG and total glutathione = TG, alpha-tocopherol, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of three different groups (n = 20 each) exposed to airborne contamination associated with coal mining activities: underground workers directly exposed, surface workers indirectly exposed, residents indirectly exposed (subjects living near the mines), and controls (non-exposed subjects). Plasma TBARS were increased and whole blood TG and GSH levels were decreased in all groups compared to controls. Plasma alpha-tocopherol contents showed approximately half the values in underground workers compared to controls. GST activity was induced in workers and also in residents at the vicinity of the mining plant, whilst CAT activity was induced only in mine workers. SOD activity was decreased in all groups examined, while GPx activity showed decreased values only in underground miners, and GR did not show any differences among the groups. The results showed that subjects directly and indirectly exposed to coal dusts face an oxidative stress condition. They also indicate that people living in the vicinity of the mine plant are in health risk regarding coal mining-related diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the toxic effect of indole-3-acetic acid (IAA) combined with horseradish peroxidase (HRP) on Prototheca zopfii from bovine mastitis. P. zopfii isolates were identified and characterized by morpho-physiological parameters; presences of P. zopfii genotype 2 were also investigated. Subsequently, P. zopfii was incubated in the absence (control) or presence of IAA/HRP and examined for: (i) cell viability; (ii) colonies number formation; (iii) antioxidant enzyme activity; and (iv) DNA integrity. Significance of differences was calculated using ANOVA and Tukey`s test (P a parts per thousand currency sign 0.05). As evidenced by Trypan blue exclusion and colony formation in Sabouraud dextrose agar, IAA/HRP addition to the culture reduced respective P. zopfii viability and P. zopfii colony formation in a concentration- and time-dependent manner. IAA/HRP specifically reduced cell viability in 10, 15, 20, 25, and 32% after 4, 6, 8, 10, and 12 h of incubation, respectively, compared with the control at the same time. The number of colony formation was inhibited (45, 82, and 88%) by IAA/HRP after 4, 6, and 9 h of incubation, respectively, compared with the control at the same time. In addition, P. zopfii antioxidant activity increased measurably in the presence of IAA/HRP (6 h); superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase increased by 90, 120, 150% and 3.4 times, compared with the controls. IAA/HRP did not appear to effect P. zopfii DNA integrity when examined by electrophoresis. In conclusion, IAA/HRP appears to function as a microbicidal mechanism on P. zopfii genotype 2 from bovine mastitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antioxidant activity of mate tea, the roasted product derived from yerba mate (Ilex paraguarienis), was observed in vitro and in animal models, but studies in humans are lacking. The aim of this study was to investigate the effects of mate tea supplementation on plasma susceptibility to oxidation and on antioxidant enzyme gene expression in healthy nonsmoking women, after acute or prolonged ingestion. We evaluated plasma total antioxidant status (TAS), the kinetics of diene conjugate generation, and thiobarbituric acid reactive substance (TBARS) contents in plasma, as well as mRNA levels of antioxidant gluthatione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). After the supplementation period with mate tea, lipid peroxidation was acutely lowered, an effect that was maintained after prolonged administration. Total antioxidant status and the level of antioxidant enzyme gene expression were also demonstrated after prolonged consumption. These results suggest that regular consumption of mate tea may increase antioxidant defense of the body by multiple mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caulobacter crescentus is a free-living alphaproteobacterium that has 11 predicted LysR-type transcriptional regulators (LTTRs). Previously, a C. crescentus mutant strain with a mini-Tn5lacZ transposon inserted into a gene encoding an LTTR was isolated; this mutant was sensitive to cadmium. In this work, a mutant strain with a deletion was obtained, and the role of this LTTR (called CztR here) was evaluated. The transcriptional start site of this gene was determined by primer extension analysis, and its promoter was cloned in front of a lacZ reporter gene. beta-Galactosidase activity assays, performed with the wild-type and mutant strains, indicated that this gene is 2-fold induced when cells enter stationary phase and that it is negatively autoregulated. Moreover, this regulator is essential for the expression of the divergent cztA gene at stationary phase, in minimal medium, and in response to zinc depletion. This gene encodes a hypothetical protein containing 10 predicted transmembrane segments, and its expression pattern suggests that it encodes a putative zinc transporter. The cztR strain was also shown to be sensitive to superoxide (generated by paraquat) and to hydrogen peroxide but not to tert-butyl hydroperoxide. The expression of katG and ahpC, but not that of the superoxide dismutase genes, was increased in the cztR mutant. A model is proposed to explain how CztR binding to the divergent regulatory regions could activate cztA expression and repress its own transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite being one of the most important antioxidant defenses, Cu,Zn-superoxide dismutase (Sod1) has been frequently associated with harmful effects, including neurotoxicity. This toxicity has been attributed to immature forms of Sod1 and extraneous catalytic activities. Among these, the ability of Sod1 to function as a peroxidase may be particularly relevant because it is increased in bicarbonate buffer and produces the reactive carbonate radical. Despite many studies, how this radical forms remains unknown. To address this question, we systematically studied hSod1 peroxidase activity in the presence of nitrite, formate, and bicarbonate-carbon dioxide. Kinetic analyses of hydrogen peroxide consumption and of nitrite, formate, and bicarbonate-carbon dioxide oxidation showed that the Sod1-bound hydroxyl-like oxidant functions in the presence of nitrite and formate. In the presence of bicarbonate-carbon dioxide, this oxidant is replaced by peroxymonocarbonate, which is then reduced to the carbonate radical. Peroxymonocarbonate intermediacy was evidenced by (13)C NMR experiments showing line broadening of its peak in the presence of Zn,ZnSod1. In agreement, peroxymonocarbonate was docked into the hSod1 active site, where it interacted with the conserved Arg(143). Also, a reaction between peroxymonocarbonate and Cu(I)Sod1 was demonstrated by stopped-flow experiments. Kinetic simulations indicated that peroxymonocarbonate is produced during Sod1 turnover and not in bulk solution. In the presence of bicarbonate-carbon dioxide, sustained hSod1-mediated oxidations occurred with low steady-state concentrations of hydrogen peroxide (4-10 mu M). Thus, carbonate radical formation through peroxymonocarbonate may be a key event in Sod1-induced toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4+ ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O-2(center dot-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 mu M) and Fe3+ ion (100 mu M) addition to the cell cultures had no effect, whereas Cu2+ (5.0-100 mu M) significantly increased cell death. Supplementation of the AA- and Cu2+-containing culture medium with antioxidants, such as catalase (5.0 mu M), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu2+ ions (10-50 mu M) relative to control cultures. This may imply higher activity of antioxidant enzymes C, in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) Plus Cu2+ (100 mu M) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diuron is one of the most commonly found N-phenylurea herbicides in marine/estuarine waters that promotes toxic effects by inhibiting photosynthesis and affecting the production of reactive oxygen species (ROS) in autotrophs. Since photo- and thermoacclimation are also ROS-mediated processes, this work evaluates a hypothetical additive effect of high light (HL) and chilling (12 degrees C) on 50 nM diuron toxicity to the highly-photosynthetically active apices of the red alga Kappaphycus alvarezii. Additive inhibition of photosynthesis was mainly evidenced by significant decreases of quantum yield of photosystem II and electron transfer rates upon co-stressors exposure to diuron-treated algae. Under extreme 12 degrees C/HL/diuron conditions, unexpected lower correlations between H(2)O(2) concentrations in seawater and radical-sensitive protein thiols were concomitantly measured with the highest indexes of photoinhibition (parameter beta). Altogether, these data support the hypothesis that co-stressors chilling/HL additively inhibit photosynthesis in diuron-exposed K. alvarezii but with less involvement of H(2)O(2) in injury effects than with only chilling or HL. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic chagasic cardiac patients are exposed to oxidative stress that apparently contributes to disease progression. Benznidazole (BZN) is the main drug used for the treatment of chagasic patients and its action involves the generation of reactive species. 41 patients with Chagas` heart disease were selected and biomarkers of oxidative stress were measured before and after 2 months of BZN treatment (5 mg/kg/day) and the subsequent antioxidant supplementation with vitamin E (800 UI/day) and C (500 mg/day) during 6 months. Patients were classified according to the modified Los Andes clinical hemodynamic classification in groups IA, IB, II and III, and the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the contents of reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), protein carbonyl (PC), vitamin E and C and nitric oxide (NO), myeloperoxidase (MPO) and adenosine deaminase (ADA) activities were measured in their blood. Excepting in group III, after BZN treatment SOD, CAT, GPx and GST activities as well as PC levels were enhanced while vitamin E levels were decreased in these groups. After antioxidant supplementation the activities of SOD, GPx and GR were decreased whereas PC, TBARS, NO, and GSH levels were decreased. In conclusion, BZN treatment promoted an oxidative insult in such patients while the antioxidant supplementation was able to attenuate this effect by increasing vitamin E levels, decreasing PC and TBARS levels, inhibiting SOD, GPx and GR activities as well as inflammatory markers, mainly in stages with less cardiac involvement. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the cardiac functioning in male Wistar rats after treatments with methionine and homocysteine thiolactone (HcyT). The rats were distributed into 3 groups and treated for 8 weeks. Group I was the control (CO) group, given water, group II was treated with methionine, and group III with HcyT (100 mg/kg). Morphometric and functional cardiac parameters were evaluated by echocardiography. Superoxide dismutase (SOD), catalase, and glutathione S-transferase activities, chemiluminescence, thiobarbituric acid reactive substances, and immunocontent were measured in the myocardium. Hyperhomocysteinemia was observed in rats submitted to the both treatments. The results showed diastolic function was compromised in HcyT group, seen by the increase of E/A (peak velocity of early (E) and late (A) diastolic filling) ratio, decrease in deceleration time of E wave and left ventricular isovolumic relaxation time. Myocardial performance index was increased in HcyT group and was found associated with increased SOD immunocontent. HcyT group demonstrated an increase in SOD, catalase, and glutatione S-transferase activity, and chemiluminescence and thiobarbituric acid reactive substances. Overall, these results indicated that HcyT induces a cardiac dysfunction and could be associated with oxidative stress increase in the myocardium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne`s muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (I) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum: and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain. (C) 2009 Elsevier Ltd. All rights reserved.